Kira, Satoru team published research on World Journal of Urology in 2020 | 771-51-7

Reference of 771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Indole, also called Benzopyrrole, a heterocyclic organic compound occurring in some flower oils, such as jasmine and orange blossom, in coal tar, and in fecal matter. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. It is used in perfumery and in making tryptophan, an essential amino acid, and indoleacetic acid (heteroauxin), a hormone that promotes the development of roots in plant cuttings. Reference of 771-51-7.

Kira, Satoru;Mitsui, Takahiko;Miyamoto, Tatsuya;Ihara, Tatsuya;Nakagomi, Hiroshi;Hashimoto, Yuka;Takamatsu, Hajime;Tanahashi, Masayuki;Takeda, Masahiro;Tsuchiya, Sachiko;Sawada, Norifumi;Takeda, Masayuki research published 《 Urinary metabolites identified using metabolomic analysis as potential biomarkers of nocturia in elderly men》, the research content is summarized as follows. Methods: We recruited 66 men aged 65-80 years. The 3-day frequency volume chart (FCV), International Prostate Symptom Score (IPSS), and quality of life score were used to assess micturition behavior. Participants with the total IPSS > 0 and ≥ 1.5 micturition on an average for three nights were included in the nocturia group. Participants with the total IPSS < 8 and < 1.5 micturition at night were included in the control group. Metabolites were compared between the groups using an unpaired t test. Results: The nocturia and control groups consisted of 45 and 21 men, resp. There were no differences in the background factors between the groups except for receiving anticholinergic drug and having life style-related diseases. The FVC revealed that nocturnal urine volume, 24 h micturition frequency, and nocturnal micturition frequency were significantly higher in the nocturia group than in the control group. The metabolomic anal. revealed 16 metabolites, which were differentially expressed between the groups. The multivariate anal. showed that increased serotonin level and decreased 3-hydroxypropionic acid and 3-indoleacetonitrile levels were associated with nocturia. Conclusions: These findings suggest that abnormal urinary metabolites including serotonin, 3-hydroxypropionic acid, and 3-indoleacetonitrile are involved in the pathogenesis of nocturia in elderly men.

Reference of 771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Kim, Yong-Guy team published research on Microbiology Spectrum in 2022 | 771-51-7

771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., Reference of 771-51-7

Indole, also called Benzopyrrole, a heterocyclic organic compound occurring in some flower oils, such as jasmine and orange blossom, in coal tar, and in fecal matter. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. It is used in perfumery and in making tryptophan, an essential amino acid, and indoleacetic acid (heteroauxin), a hormone that promotes the development of roots in plant cuttings. Reference of 771-51-7.

Kim, Yong-Guy;Lee, Jin-Hyung;Park, Sunyoung;Lee, Jintae research published 《 The anticancer agent 3,3′-diindolylmethane inhibits multispecies biofilm formation by acne-causing bacteria and Candida albicans》, the research content is summarized as follows. The Gram-pos. anaerobic bacterium Cutibacterium acnes is a major inhabitant of human skin and has been implicated in acne vulgaris formation and in the formation of multispecies biofilms with other skin-inhabiting organisms like Staphylococcus aureus and Candida albicans. Indoles are widespread in nature (even in human skin) and function as important signaling mols. in diverse prokaryotes and eukaryotes. In the present study, we investigated the antibacterial and antibiofilm activities of 20 indoles against C. acnes. Of the indoles tested, indole-3-carbinol at 0.1 mM significantly inhibited biofilm formation by C. acnes without affecting planktonic cell growth, and the anticancer drug 3,3′-diindolylmethane (DIM) at 0.1 mM (32μg/mL) also significantly inhibited planktonic cell growth and biofilm formation by C. acnes, whereas the other indoles and indole itself were less effective. Also, DIM at 0.1 mM successfully inhibited multispecies biofilm formation by C. acnes, S. aureus, and C. albicans. Transcriptional analyses showed that DIM inhibited the expressions of several biofilm-related genes in C. acnes, and at 0.05 mM, DIM inhibited hyphal formation and cell aggregation by C. albicans. These results suggest that DIM and other indoles inhibit biofilm formation by C. acnes and have potential use for treating C. acnes associated diseases.

771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., Reference of 771-51-7

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Kim, Kyunghee team published research on ACS Applied Materials & Interfaces in 2021 | 35737-15-6

Category: indole-building-block, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., 35737-15-6.

Indole, also called Benzopyrrole, a heterocyclic organic compound occurring in some flower oils, such as jasmine and orange blossom, in coal tar, and in fecal matter. 35737-15-6, formula is C26H22N2O4, Name is Fmoc-Trp-OH. It is used in perfumery and in making tryptophan, an essential amino acid, and indoleacetic acid (heteroauxin), a hormone that promotes the development of roots in plant cuttings. Category: indole-building-block.

Kim, Kyunghee;Kloxin, Christopher J.;Saven, Jeffery G.;Pochan, Darrin J. research published 《 Nanofibers produced by electrospinning of ultrarigid polymer rods made from designed peptide bundlemers》, the research content is summarized as follows. Mimicking the hierarchical assembly of natural fiber materials is an important design challenge in the manufacturing of nanostructured materials with biomols. such as peptides. Here, we produce nanofibers with control of structure over multiple length scales, ranging from peptide mol. assembly into supramol. building blocks called “bundlemers,” to rigid-rod formation through a covalent connection of bundlemer building blocks, and, ultimately, to uniaxially oriented fibers made with the rigid-rod polymers. The peptides are designed to phys. assemble into coiled-coil bundles, or bundlemers, and to covalently interact in an end-to-end fashion to produce the rigid-rod polymer. The resultant rodlike polymer exhibits a rigid, cylindrical nanostructure confirmed by transmission electron microscopy (TEM) and, correspondingly, exhibits shear-thinning behavior at low shear rates observed in many nanoscopic rod systems. The rigid-rod chains are further organized into final fiber materials via electrospinning processing, all the while preserving their unique rodlike structural characteristics. Morphol. and structural investigations of the nanofibers through SEM, transmission electron microscopy, and X-ray scattering, as well as mol. characterization via Fourier transform IR (FTIR) and Raman spectroscopy, show that continuous nanofibers are composed of oriented rigid-rod chains constituted by α-helical peptides within bundle building blocks. Mech. properties of electrospun fibers are also presented. The ability to produce nanofibers from the oriented rigid-rod polymer reveals bundlemer chains as a viable tool for the development of new fiber materials with targeted structure and properties.

Category: indole-building-block, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., 35737-15-6.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Kim, Dong-in team published research on Chemical Communications (Cambridge, United Kingdom) in 2022 | 35737-15-6

35737-15-6, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., SDS of cas: 35737-15-6

Indole, first isolated in 1866, has the molecular formula C8H7N, and it is commonly synthesized from phenylhydrazine and pyruvic acid, 35737-15-6, formula is C26H22N2O4, Name is Fmoc-Trp-OH. although several other procedures have been discovered.Indole is a colourless solid having a pleasant fragrance in highly dilute solutions. It melts at 52.5° C (126.5° F). SDS of cas: 35737-15-6.

Kim, Dong-in;Han, Seong-jae;Lim, Yong-beom research published 《 Unique behavior of the α-helix in bending deformation》, the research content is summarized as follows. The maximum degree of bending that can be tolerated by the rigid rod-like α-helix remains unknown; however, it should be very difficult or even impossible to make α-helixes with varying degrees of curvature in folded proteins. As an exptl. tractable model, here we utilize cyclic proteins and peptides to determine the maximum possible bending in the α-helix. We artificially enforced bending in the α-helixes by using variously sized macrocycles and compared the structural characteristics of the macrocycles with those of their linear counterparts. This differential anal. reveals that the radius of curvature (RC) for the maximally bent α-helix is approx. 10 times smaller than those of typical α-helixes found in natural proteins. Together with the novel finding of the limit of α-helix deformation, excessively bent α-helixes can be further utilized in designing de novo peptides and proteins with unique structures and peculiar functions.

35737-15-6, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., SDS of cas: 35737-15-6

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Khalaj, Mehdi team published research on Applied Organometallic Chemistry in 2020 | 19005-93-7

19005-93-7, 1H-Indole-2-carbaldehyde is a useful research compound. Its molecular formula is C9H7NO and its molecular weight is 145.16 g/mol. The purity is usually 95%.
1H-Indole-2-carbaldehyde is a useful research chemical used as a reactant in the synthesis of substituted 2-amino-4H-chromenes and benzochromenes using K2CO3 as catalyst.
1H-Indole-2-carbaldehyde is a solvent that has been used in the protein data and molecular modeling study. The 1H NMR spectrum of this compound showed an intense signal at δ 4.8 ppm, corresponding to the hydroxyl proton. This solvent also has fluorescence properties, as shown by its photophysical and structural analysis. The 1H-indole-2-carbaldehyde molecule has an active methylene group and an oxindole ring with amine substituents., COA of Formula: C9H7NO

Indole, also called Benzopyrrole, a heterocyclic organic compound occurring in some flower oils, such as jasmine and orange blossom, in coal tar, and in fecal matter. 19005-93-7, formula is C9H7NO, Name is 1H-Indole-2-carbaldehyde. It is used in perfumery and in making tryptophan, an essential amino acid, and indoleacetic acid (heteroauxin), a hormone that promotes the development of roots in plant cuttings. COA of Formula: C9H7NO.

Khalaj, Mehdi;Mousavi-Safavi, Seyed Mahmoud;Farahani, Nasrin;Lipkowski, Janusz research published 《 MgO nanopowders catalyzed synthesis of pyrano[4,3-d]thiazolo[3,2-a]pyrimidine derivatives》, the research content is summarized as follows. A cubic phase of pure MgO nanopowders was prepared in an aqueous solution containing freshly squeezed orange juice with pulp and characterized by X-ray diffraction (XRD), field emission SEM (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and Fourier transform IR (FT-IR) spectroscopic techniques. The catalytic potential of MgO nanopowders was evaluated in preparation of pyrano[4,3-d]thiazolo[3,2-a]pyrimidine and chromeno[4,3-d]thiazolo[3,2-a]pyrimidines derivatives using the three simple methods including thermal, ultrasonic irradiation, and high-speed ball milling (HSBM) technique under solvent-free conditions. All products were successfully formed in high yields.

19005-93-7, 1H-Indole-2-carbaldehyde is a useful research compound. Its molecular formula is C9H7NO and its molecular weight is 145.16 g/mol. The purity is usually 95%.
1H-Indole-2-carbaldehyde is a useful research chemical used as a reactant in the synthesis of substituted 2-amino-4H-chromenes and benzochromenes using K2CO3 as catalyst.
1H-Indole-2-carbaldehyde is a solvent that has been used in the protein data and molecular modeling study. The 1H NMR spectrum of this compound showed an intense signal at δ 4.8 ppm, corresponding to the hydroxyl proton. This solvent also has fluorescence properties, as shown by its photophysical and structural analysis. The 1H-indole-2-carbaldehyde molecule has an active methylene group and an oxindole ring with amine substituents., COA of Formula: C9H7NO

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Keutgen, N. team published research on Photosynthetica in 2020 | 771-51-7

Quality Control of 771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Indole, also called Benzopyrrole, a heterocyclic organic compound occurring in some flower oils, such as jasmine and orange blossom, in coal tar, and in fecal matter. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. It is used in perfumery and in making tryptophan, an essential amino acid, and indoleacetic acid (heteroauxin), a hormone that promotes the development of roots in plant cuttings. Quality Control of 771-51-7.

Keutgen, N.;Tomaszewska-Sowa, M.;Keutgen, A. J. research published 《 Chlorophyll fluorescence of Nicotiana tabacum expressing the green fluorescent protein》, the research content is summarized as follows. Evidence that the green fluorescence protein (GFP) develops a significant toxicity in plants has not been found, but it may represent a source of free radicals as a consequence of its fluorescence. In addition green light is known to trigger the acclimatisation of the photosynthetic system towards a shady environment. Moreover, the light-harvesting system may acclimate to an increased availability of green light. Each of these effects may be induced by the GFP. Therefore, the hypothesis was tested, whether transformation of Nicotiana tabacum cv. Bursan to express the GFP could affect chlorophyll fluorescence parameters. The anal. revealed a significantly lower absorption of energy per excited cross section in GFP-transformed tobacco, a lower number of active reaction centers per excited cross section, a larger absorption and trapped energy flux leading to the reduction of the primary quinone electron acceptor of PSII per reaction center, and a lower variable fluorescence.

Quality Control of 771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Kaya, Serdal team published research on Journal of Photochemistry and Photobiology, A: Chemistry in 2021 | 19005-93-7

Safety of 1H-Indole-2-carbaldehyde, 1H-Indole-2-carbaldehyde is a useful research compound. Its molecular formula is C9H7NO and its molecular weight is 145.16 g/mol. The purity is usually 95%.
1H-Indole-2-carbaldehyde is a useful research chemical used as a reactant in the synthesis of substituted 2-amino-4H-chromenes and benzochromenes using K2CO3 as catalyst.
1H-Indole-2-carbaldehyde is a solvent that has been used in the protein data and molecular modeling study. The 1H NMR spectrum of this compound showed an intense signal at δ 4.8 ppm, corresponding to the hydroxyl proton. This solvent also has fluorescence properties, as shown by its photophysical and structural analysis. The 1H-indole-2-carbaldehyde molecule has an active methylene group and an oxindole ring with amine substituents., 19005-93-7.

Indole, first isolated in 1866, has the molecular formula C8H7N, and it is commonly synthesized from phenylhydrazine and pyruvic acid, 19005-93-7, formula is C9H7NO, Name is 1H-Indole-2-carbaldehyde. although several other procedures have been discovered.Indole is a colourless solid having a pleasant fragrance in highly dilute solutions. It melts at 52.5° C (126.5° F). Safety of 1H-Indole-2-carbaldehyde.

Kaya, Serdal;Aydin, Hatice Gulten;Keskin, Selbi;Ekmekci, Zeynep;Menges, Nurettin research published 《 Exploring of indole derivatives for ESIPT emission: A new ESIPT-based fluorescence skeleton and TD-DFT calculations》, the research content is summarized as follows. Appropriate synthesis methods gave six different indole derivatives substituted at the C-2 or C-3 position. ESIPT emission capacities of these derivatives were investigated. It was concluded that the indole derivative containing the 1,2-dicarbonyl group at the C-2 position has ESIPT emission. Although adding water to the DMSO solution of the ESIPT-based mol. (9:1) resulted in ESIPT quenching, steady-state measurements in MeOH did not occur ESIPT quenching. TD-DFT calculation for uncovering the ESIPT mechanism emerged that the ESIPT mechanism occurred as a barrierless process. The X-ray anal. and DFT conformational anal. revealed that NH and CO groups involving proton transfer mechanisms are in the cis position. A mono-exponential decay was observed in DMSO and MeOH solutions, in which lifetimes were measured as 6.1 and 5.5 ns, resp. pH studies revealed that acidic and basic solutions of mol. 7 did not influence ESIPT emission.

Safety of 1H-Indole-2-carbaldehyde, 1H-Indole-2-carbaldehyde is a useful research compound. Its molecular formula is C9H7NO and its molecular weight is 145.16 g/mol. The purity is usually 95%.
1H-Indole-2-carbaldehyde is a useful research chemical used as a reactant in the synthesis of substituted 2-amino-4H-chromenes and benzochromenes using K2CO3 as catalyst.
1H-Indole-2-carbaldehyde is a solvent that has been used in the protein data and molecular modeling study. The 1H NMR spectrum of this compound showed an intense signal at δ 4.8 ppm, corresponding to the hydroxyl proton. This solvent also has fluorescence properties, as shown by its photophysical and structural analysis. The 1H-indole-2-carbaldehyde molecule has an active methylene group and an oxindole ring with amine substituents., 19005-93-7.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Kassab, Asmaa E. team published research on Journal of Enzyme Inhibition and Medicinal Chemistry in 2021 | 19005-93-7

19005-93-7, 1H-Indole-2-carbaldehyde is a useful research compound. Its molecular formula is C9H7NO and its molecular weight is 145.16 g/mol. The purity is usually 95%.
1H-Indole-2-carbaldehyde is a useful research chemical used as a reactant in the synthesis of substituted 2-amino-4H-chromenes and benzochromenes using K2CO3 as catalyst.
1H-Indole-2-carbaldehyde is a solvent that has been used in the protein data and molecular modeling study. The 1H NMR spectrum of this compound showed an intense signal at δ 4.8 ppm, corresponding to the hydroxyl proton. This solvent also has fluorescence properties, as shown by its photophysical and structural analysis. The 1H-indole-2-carbaldehyde molecule has an active methylene group and an oxindole ring with amine substituents., Recommanded Product: 1H-Indole-2-carbaldehyde

Indole, also called Benzopyrrole, a heterocyclic organic compound occurring in some flower oils, such as jasmine and orange blossom, in coal tar, and in fecal matter. 19005-93-7, formula is C9H7NO, Name is 1H-Indole-2-carbaldehyde. It is used in perfumery and in making tryptophan, an essential amino acid, and indoleacetic acid (heteroauxin), a hormone that promotes the development of roots in plant cuttings. Recommanded Product: 1H-Indole-2-carbaldehyde.

Kassab, Asmaa E.;Gedawy, Ehab M.;Hamed, Mohammed I. A.;Doghish, Ahmed S.;Hassan, Rasha A. research published 《 Design, synthesis, anticancer evaluation, and molecular modelling studies of novel tolmetin derivatives as potential VEGFR-2 inhibitors and apoptosis inducers》, the research content is summarized as follows. Novel tolmetin derivatives to were designed, synthesized, and evaluated for antiproliferative activity by NCI (USA) against a panel of 60 tumor cell lines. The cytotoxic activity of the most active tolmetin derivatives and was examined against HL-60, HCT-15, and UO-31 tumor cell lines. Compound was found to be the most potent derivative against HL-60, HCT-15, and UO-31 cell lines with IC50 values of 10.32 ± 0.55, 6.62 ± 0.35, and 7.69 ± 0.41μM, resp. Mol. modeling studies of derivative towards the VEGFR-2 active site were performed. Compound displayed high inhibitory activity against VEGFR-2 (IC50 = 0.20μM). It extremely reduced the HUVECs migration potential exhibiting deeply reduced wound healing patterns after 72 h. It induced apoptosis in HCT-15 cells (52.72-fold). This evidence was supported by an increase in the level of apoptotic caspases-3, -8, and -9 by 7.808-, 1.867-, and 7.622-fold, resp. Compound arrested the cell cycle in the G0/G1 phase. Furthermore, the ADME studies showed that compound possessed promising pharmacokinetic properties.

19005-93-7, 1H-Indole-2-carbaldehyde is a useful research compound. Its molecular formula is C9H7NO and its molecular weight is 145.16 g/mol. The purity is usually 95%.
1H-Indole-2-carbaldehyde is a useful research chemical used as a reactant in the synthesis of substituted 2-amino-4H-chromenes and benzochromenes using K2CO3 as catalyst.
1H-Indole-2-carbaldehyde is a solvent that has been used in the protein data and molecular modeling study. The 1H NMR spectrum of this compound showed an intense signal at δ 4.8 ppm, corresponding to the hydroxyl proton. This solvent also has fluorescence properties, as shown by its photophysical and structural analysis. The 1H-indole-2-carbaldehyde molecule has an active methylene group and an oxindole ring with amine substituents., Recommanded Product: 1H-Indole-2-carbaldehyde

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Kanta Mahato, Rajani team published research on Asian Journal of Organic Chemistry in 2021 | 19005-93-7

Electric Literature of 19005-93-7, 1H-Indole-2-carbaldehyde is a useful research compound. Its molecular formula is C9H7NO and its molecular weight is 145.16 g/mol. The purity is usually 95%.
1H-Indole-2-carbaldehyde is a useful research chemical used as a reactant in the synthesis of substituted 2-amino-4H-chromenes and benzochromenes using K2CO3 as catalyst.
1H-Indole-2-carbaldehyde is a solvent that has been used in the protein data and molecular modeling study. The 1H NMR spectrum of this compound showed an intense signal at δ 4.8 ppm, corresponding to the hydroxyl proton. This solvent also has fluorescence properties, as shown by its photophysical and structural analysis. The 1H-indole-2-carbaldehyde molecule has an active methylene group and an oxindole ring with amine substituents., 19005-93-7.

Indole, first isolated in 1866, has the molecular formula C8H7N, and it is commonly synthesized from phenylhydrazine and pyruvic acid, 19005-93-7, formula is C9H7NO, Name is 1H-Indole-2-carbaldehyde. although several other procedures have been discovered.Indole is a colourless solid having a pleasant fragrance in highly dilute solutions. It melts at 52.5° C (126.5° F). Electric Literature of 19005-93-7.

Kanta Mahato, Rajani;Kumar Mudi, Prafullya;Deb, Mayukh;Biswas, Bhaskar research published 《 A Direct metal-free synthetic approach for the efficient production of privileged benzimidazoles in water medium under aerobic condition》, the research content is summarized as follows. A metal-free methodol. for the synthesis of 1,2-disubstituted and 2-substituted benzimidazoles with high to excellent yields was developed. The course of synthesis involved easy work-up, straightforward purification, inexpensive reaction setup and wide substrate scope under extremely mild and operationally simple conditions which makes the synthetic strategy more lucrative, practical and reliable. The serious challenge to carry out these reactions in a pure aqueous medium was achieved at 75°C in presence of air bubbles. The applicability of this operationally simple and metal-free synthetic approach for the gram-scale synthesis of benzimidazole derivatives with good yield (∼74%) further strengthens its potentiality for the synthesis at an industrial scale.

Electric Literature of 19005-93-7, 1H-Indole-2-carbaldehyde is a useful research compound. Its molecular formula is C9H7NO and its molecular weight is 145.16 g/mol. The purity is usually 95%.
1H-Indole-2-carbaldehyde is a useful research chemical used as a reactant in the synthesis of substituted 2-amino-4H-chromenes and benzochromenes using K2CO3 as catalyst.
1H-Indole-2-carbaldehyde is a solvent that has been used in the protein data and molecular modeling study. The 1H NMR spectrum of this compound showed an intense signal at δ 4.8 ppm, corresponding to the hydroxyl proton. This solvent also has fluorescence properties, as shown by its photophysical and structural analysis. The 1H-indole-2-carbaldehyde molecule has an active methylene group and an oxindole ring with amine substituents., 19005-93-7.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Kang, Hee Kyoung team published research on ACS Infectious Diseases in 2021 | 35737-15-6

35737-15-6, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., Reference of 35737-15-6

Previous studies have identified that indole-oxidases are present in P. putida, whose major ligands are heterocyclic substrates and have an interesting affinity when the substrate is indole. 35737-15-6, formula is C26H22N2O4, Name is Fmoc-Trp-OH. These enzymes oxidize the ring so the substrate turns into Indigo. Reference of 35737-15-6.

Kang, Hee Kyoung;Park, Jonggwan;Seo, Chang Ho;Park, Yoonkyung research published 《 PEP27-2, a Potent Antimicrobial Cell-Penetrating Peptide, Reduces Skin Abscess Formation during Staphylococcus aureus Infections in Mouse When Used in Combination with Antibiotics》, the research content is summarized as follows. PEP27, a 27-amino acid (aa) peptide secreted by Streptococcus pneumoniae, is an autolytic peptide that functions as a major virulence factor. To develop a clin. applicable antimicrobial peptide (AMP), we designed PEP27 analogs with Trp substitutions to enhance its antimicrobial activity compared to that of PEP27. Particularly, PEP27-2 showed strong antimicrobial activity against a wide variety of bacteria, including multidrug-resistant (MDR) bacteria. It was found that the antimicrobial activity of PEP27-2 was increased by substituting Trp for the aa at the middle position of PEP27. We found that PEP27-2 acts as an effective cell-penetrating peptide in bacterial and mammalian cells. Here, we proved that s.c. infection with MDR Staphylococcus aureus induced skin lesions such as skeletal muscle damage, deep inflammation, and necrosis of the overlaying dermis in mice. Combination treatment with antibiotics revealed synergistic effects, remarkably reducing abscess size and improving the bacteria removal rate from the infection site. Moreover, PEP27-2-antibiotic combination treatment reduced inflammation, lowering levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, inducible NO synthase (iNOS), and cyclooxygenase (COX-2) in skin abscess tissue. The results suggest that the PEP27-2 peptide is a promising therapeutic option for combating MDR bacterial strains by enhancing antibiotic penetration and protecting against MDR bacteria.

35737-15-6, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., Reference of 35737-15-6

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles