Gronowitz, Salo et al. published their research in Arkiv foer Kemi in 1967 | CAS: 15540-90-6

4,7-Dimethylindoline-2,3-dione (cas: 15540-90-6) belongs to indole derivatives. In addition to tryptophan, indigo, and indoleacetic acid, numerous compounds obtainable from plant or animal sources contain the indole molecular structure. It is used in perfumery and in making tryptophan, an essential amino acid, and indoleacetic acid (heteroauxin), a hormone that promotes the development of roots in plant cuttings.Formula: C10H9NO2

Optically active bithienyls. VIII. Synthesis of 3,3′,6,6′-tetramethyldiphenic acid was written by Gronowitz, Salo;Hansen, Gunnar. And the article was included in Arkiv foer Kemi in 1967.Formula: C10H9NO2 The following contents are mentioned in the article:

cf. CA 62: 11757d. The title compound (I) was prepared for comparison of its racemization rate with that of its bithienyl analog (II) (G. and Beselin, CA 59: 15241g). The procedure for condensation of 2,5-Me2C6H3NH2 with CCl3CHO.H2O and NH2OH.HCl (Baker, et al., CA 46: 10176h) was modified and yielded 78% 2,5-Me2C6H3NHCOCH:NOH (III), m. 153-6°. III cyclized with 86% H2SO4 yielded 76% 4,7-dimethylisatin decomposing at 270° which on oxidation with alk. H2O2 yielded 68% 3,6-dimethylanthranilic acid (IV), m. 119-20°. The diazonium salt of IV (Atkinson and Lawler: Organic Syntheses. Collective Volume 1 Wiley: New York 1941. p. 222) yielded 56% I, m. 290-306°. Three other routes to I failed but produced new compounds 2,3-Dibromo-5-nitro-p-xylene (from nitration of 2-bromo-p-xylene with fuming HNO3 and bromination at 0° of the 5-nitro derivative in concentrated H2SO4 in the presence of Ag2SO4) was reduced in 90% EtOH with Fe powder and HCl yielding 94% 5-amino-2,3-dibromo-p-xylene (V), m. 87-9° (EtOH-H2O). V diazotized at 0°, reduced with 50% H3PO2 (added dropwise at -2°), left 18 hrs. in a refrigerator, and the oil which separated taken up in C6H6 and fractionated, yielded 85% 2,3-dibromo-p-xylene (VI), b16 139-44°, m. 16-17°. Since VI with BuLi and CO2 failed to give the corresponding carboxylic acid, apparently a stable Li compound could not be formed for a synthesis of I parallel to that of II. 2-Acetamido-p-xylene nitrated, refluxed with concentrated HCl, and steam distilled yielded 10% 2-amino-3-nitro-p-xylene (VII), m. 29-32°, from the distillate and 52% 5-nitro isomer (VIII), m. 142-3°, from the residue. The structures of VII and VIII are evident from their N.M.R. spectra. VIII brominated in AcOH at 40° yielded 75% 2-amino-3-bromo-5-nitro-p-xylene (Blanksma CA 7: 1492) which was diazotized by Schoutissen’s method (CA 28: 1215), treated with KI in H2O, warmed to 45°, NaHSO3 added, and the product recrystallized from EtOH-H2O yielding 85% 3-bromo-2-iodo-5-nitro-p-xylene (IX), m. 107-8°. A biphenyl derivative could not be obtained from IX by Ullman coupling. 3,6-Dimethylphthalic anhydride (from the Diels-Alder adduct between 2,5-dimethylfuran and maleic anhydride) heated 2-3 hrs. over a free flame with concentrated NH4OH yielded 97% 3,6-dimethylphathalimide (X), m. 227-8° (MeOH-H2O). X should give IV with NaOH solution and hypobromite, but only the anhydride resulted. N.M.R. values are recorded for all compounds This study involved multiple reactions and reactants, such as 4,7-Dimethylindoline-2,3-dione (cas: 15540-90-6Formula: C10H9NO2).

4,7-Dimethylindoline-2,3-dione (cas: 15540-90-6) belongs to indole derivatives. In addition to tryptophan, indigo, and indoleacetic acid, numerous compounds obtainable from plant or animal sources contain the indole molecular structure. It is used in perfumery and in making tryptophan, an essential amino acid, and indoleacetic acid (heteroauxin), a hormone that promotes the development of roots in plant cuttings.Formula: C10H9NO2

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Buu-Hoi et al. published their research in Bulletin de la Societe Chimique de France in 1946 | CAS: 15540-90-6

4,7-Dimethylindoline-2,3-dione (cas: 15540-90-6) belongs to indole derivatives. Indole could be stereoselectively alkylated with chiral cyclopentyl sulfone reagent. Indole plays a fundamental role for QS in E. coli, being one of the signal molecules responsible for the transcription of a variety of genes (gabT, and tnaB ASTD). Synthetic Route of C10H9NO2

New isatins was written by Buu-Hoi;Guettier, Haniel. And the article was included in Bulletin de la Societe Chimique de France in 1946.Synthetic Route of C10H9NO2 The following contents are mentioned in the article:

New halogenated or nitrated compounds are prepared from homologs of isatin. The starting materials were prepared by the Sandmeyer reaction (of. C.A. 13, 1840). Thus, 9-tert-butylindophenazine, m. 230°, results from heating o-C6H4(NH2)2 with the product of the Sandmeyer reaction (apparently 5-tert-butylisatin) in AcOH and crystallizing from alc. 5-Methylisatin (I) suspended in H2O containing a few grains of iodine and treated with a slow current of Cl several hours at a tepid temperature gives 5-methyl-7-chloroisatin, m. 180° (from alc.). I (10 g.) in 100 cc. cold H2SO4, treated with 6 g. KNO3 and poured into ice, gives about 1 g. 5-methyl-7-nitroisatin, m. 202-3° after reprecipitation from aqueous NaNO3 by HCl and recrystallization from boiling alc. Likewise, 2 g. 6-methylisatin in suspension, treated with 1 cc. Br 2 hrs., yields 5-bromo-6-methylisatin, m. about 200° (softens above 190°) after recrystallization from AcOH. 7-Methylisatin with Br gives 5-bromo-7-methylisatin, m. about 287°. Treating 5 g. 4,7-dimethylisatin (II) suspended in 500 cc. H2O with a slow stream of Cl gives about 3 g. 4,7-dimethyl-5-chloroisatin, m. 270-1° (from AcOH). Similarly, 10 g. II treated with Br 24 hrs. gives about 7 g. 4,7-dimethyl-5-bromoisatin, m. 298°. II with KNO3 in H2SO4 gives 4, 7-dimethyl-5-nitroisatin, m. 255°. A series of indophenazines was prepared by heating together in AcOH the isatin and o-C6H4(NH2)2 and recrystallizing from glacial AcOH or PhNO2. Empirical formulas and m.p. are: C15H10N3Br, m. 261°; C15H10N3Cl, m. 285°; C15H10O2N4, m. 319°; C16H13N3, m. 315° (sublimes above 290°); C15H11N3, m. 313° (sublimes above 260°); C15H10N3Br, m. 310-15°; C15H11N3, m. 313°; C15H10N3Br, m. 312°; C16H13N3, m. 309°; C15H12N3Cl, m. 319°; C10H12N3Br, m. 321°; C16H12O2N4, m. above 340°. A series of isatin 3-hydrazones are prepared by treating the isatin with excess N2H4.H2O in dilute alc. Empirical formulas are: C9H8ON3Br, m. 246° (decomposition); C9H8ON3Br, m. 256° (decomposition); C9H8ON3Br, decompose 220°; C9H3ON3Cl, decompose 198°. A series of isatin 3-phenylhydrazones results from adding PhNHNH2. dropwise to a saturated alc. solution of the isatin, boiling, cooling, and crystallizing from alc. Empirical formulas: C15H12ON3Br, decompose 287°; C15H12ON3Br, decompose 269-70°; C15H12ON3Br, 280°; C15H12ON3Cl, decompose 259-60°. N-Mercuric derivatives, prepared from all the above isatins by treating them in alc. with aqueous Hg(OAc)2 and crystallized from HOAc, m. above 350°. This study involved multiple reactions and reactants, such as 4,7-Dimethylindoline-2,3-dione (cas: 15540-90-6Synthetic Route of C10H9NO2).

4,7-Dimethylindoline-2,3-dione (cas: 15540-90-6) belongs to indole derivatives. Indole could be stereoselectively alkylated with chiral cyclopentyl sulfone reagent. Indole plays a fundamental role for QS in E. coli, being one of the signal molecules responsible for the transcription of a variety of genes (gabT, and tnaB ASTD). Synthetic Route of C10H9NO2

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Mix, Hermann et al. published their research in Chemische Berichte in 1956 | CAS: 15540-90-6

4,7-Dimethylindoline-2,3-dione (cas: 15540-90-6) belongs to indole derivatives. Indole, first isolated in 1866, and it is commonly synthesized from phenylhydrazine and pyruvic acid, although several other procedures have been discovered. Moreover, it is known that it controls biofilm formation. However, the role of indole in the cell has not been fully elucidated.Application of 15540-90-6

Organic catalysts. XL. Synthetic dehydrogenases. 8 was written by Mix, Hermann;Krause, Hans Walter. And the article was included in Chemische Berichte in 1956.Application of 15540-90-6 The following contents are mentioned in the article:

Some isatins, CMe:CH.CH:CR.C:C.NH.CO.CO (I), and N-(7-methylisatin-4-carbonyl)amino acid Et esters (II), substituted in the 4-position, are prepared and tested for their dehydrogenase activity. Treating p-MeC6H4CO2H with fuming HNO3 yields 4,3-Me(O2N)C6H3CO2H, m. 188-9°, which, reduced with Raney Ni in dioxane at 120° and 100 atm., gives 90% 4,3-Me(H2N)C6H3CO2H (III), m. 162°. Heating 5 g. III in 150 cc. H2O containing 2 cc. concentrated H2SO4 with 5.5 g. CCl3CHO.H2O (IV) and 6.5 g. (HONH2)2.H2SO4 (V) yields 3-isonitrosoacetamido-4-methylbenzoic acid which (10 g.), heated in 22 cc. concentrated H2SO4 at 85-90° and kept 0.5 hr. at 95-100°, gives 72% I (R = CO2H) (VI), yellow-red needles, m. 278-80°; Et ester, prepared by heating 5 g. VI in 150 cc. EtOH-HCl 0.5 hr. on a water bath and chromatographing over Al2O3, orange rods, m. 205°. Heating 5 g. 4,3-Me(H2N)C6H3CN, m. 81°, 6.3 g. IV, and 7.5 g. V in 430 cc. H2O and 3 cc. concentrated H2SO4 gives 2-2.5 g. isonitroso compound which, heated with concentrated H2SO4, yields I (R = CONH2), brick-red crystals, decompose above 270°. Adding 0.94 cc. ClCO2Et dropwise to a solution of 2 g. VI and 2.28 g. Bu3N in 20 cc. CHCl3 at -5°, stirring the mixture 0.5 hr. at -5°, then adding 900 mg. PhNH2, and stirring the mixture 12 hrs. give I (R = CONHPh), small red rods, m. 308°; I (R = CONEt2), light red leaflets, m. 192°. The following II are prepared (amino acid given): alanine, light red rods, m. 254°; norvaline, light red leaflets, m. 220°; α-aminobutyric acid, red leaflets, m. 218-19°; glutamic di-Et ester, red needles, m. 171-2°; glutamic mono-Et ester, long red needles, m. 186-7°; phenylalanine, red needles, m. 225-6°; tryptophan Me ester, purple crystals, m. 254°. Treating 1.2 g. 2,4-Me2C6H3NH2 in 30 cc. H2O and 1.16 g. concentrated H2SO4 with 1.7 g. IV and 1.9 g. V yields isonitrosoacetamido-p-xylene which, added to 10 cc. concentrated H2SO4 at 65-7° and the mixture heated 20 min. at 65-70°, gives 4,7-dimethylisatin, yellow-red precipitate, m. 261°. Reduction of 4,3-Me(O2N)C6H3NHAc with Raney Ni at 120° and 100 atm. gives 100% 3,4-Me(H2N)C6H3NHAc, m. 159°, which (6 g.), stirred 4-5 hrs. at 36-40° with 6 g. IV and 7.2 g. V, yields 3-isonitrosoacetamido-4-methylacetanilide. Heating the latter 45 min. in 10 cc. concentrated H2SO4 at 95-100° gives 4-amino-7-methylisatin, light red needles, charring above 310°. The dehydrogenase activity of these compounds has been tested by measuring the time required to decolorize a solution of 2 × 10-5 moles methylene blue and 2.25 × 10-4 moles DL-alanine in 71% HCONMe2 at 40°. The results, given in a table, show that V is the most active catalyst. The introduction of the Me group at the 7-position has no effect on the dehydrogenation velocity. For the calculation of the partial velocities of the catalysis the PS curves of some of the compounds are given. This study involved multiple reactions and reactants, such as 4,7-Dimethylindoline-2,3-dione (cas: 15540-90-6Application of 15540-90-6).

4,7-Dimethylindoline-2,3-dione (cas: 15540-90-6) belongs to indole derivatives. Indole, first isolated in 1866, and it is commonly synthesized from phenylhydrazine and pyruvic acid, although several other procedures have been discovered. Moreover, it is known that it controls biofilm formation. However, the role of indole in the cell has not been fully elucidated.Application of 15540-90-6

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Giovannini, E. et al. published their research in Helvetica Chimica Acta in 1957 | CAS: 15540-90-6

4,7-Dimethylindoline-2,3-dione (cas: 15540-90-6) belongs to indole derivatives. Indole produced by Proteus, Pseudomonas, Escherichia and other species was shown to be a growth promoting factor in Arabidopsis thaliana. More than 200 indole derivatives have already been marketed as drugs or are under advanced stages of clinical trials.Name: 4,7-Dimethylindoline-2,3-dione

Reactivity of the carbonyl group and of dehydrogenation activity of isatin compounds. II was written by Giovannini, E.;Portmann, P.;Johl, A.;Schnyder, K.;Knecht, B.;Zen-Ruffinen, H. P.. And the article was included in Helvetica Chimica Acta in 1957.Name: 4,7-Dimethylindoline-2,3-dione The following contents are mentioned in the article:

The dehydrogenation activity of many mono- and disubstituted derivatives of isatin (I) expressed as time of decolorization of a methylene blue (II) solution according to Langenbeck (C.A. 21, 2126) have been measured and tabulated as relative activities to that of I (100), using 10-4 or 2 × 10-5 mole compound in 5 cc. pyridine and 2 cc. standard aqueous solution [2 g. DL-MeCH(NH2)CO2H (III), 0.3737 g. II, and 10 cc. AcOH made up to 100 cc.] (isatin substituent, m.p., decoloration time (min.) with 10-4 and 2 × 10-5 mole, relative dehydrogenation activity given): H, 200°, 10, 50, 100; 4-Me, 190-2°, > 1320, -, < 0.75; 5-Me, 186-7°, 11, 50, 95; 6-Me, 190-1°, 19, 72, 61; 7-Me, 266°, -, 31, 161; 4-Cl, 259-60°, 113, -, 8.8; 5-Cl, 251-3°, 7, 42, 131; 6-Cl, 263°, 8, -, -; 7-Cl, 188-90°, 6, 33, 159; 4-NO2, 245°, > 900, -, < 1.1; 5-NO2, 253°, 12, 68, 88; 6-NO2, 288-90°, 7, 48, 123; 7-NO2, 237°, -, 42, 119; 4-NH2, 254-5°, > 900, -, < 1.1; 5-NH2, above 330°, 12, 65, 80; 7-NH2, above 330°, -, 52, 96; 4-HO, 260° (decomposition), 73, -, 13.7; 5-HO, above 290° (decomposition), 9, -, 111; 6-HO, above 325° (decomposition), 127, -, 7.8; 5-MeO, 201-2°, 9, 43, 114; 6-MeO, 229-30°, 69, -, 14.4; 7-MeO, 240-2°, 7, 33, 147; 4-CO2H, 285°, -, 1.5, 3300; 5-CO2H, 295°, 7, 32, 150; 6-CO2H, 328-30°, -, 28, 178; 7-CO2H, 277°, -, 32, 156; 4-SO3H, 183° (decomposition), 4, -, 250; 5-SO3H, 145-7°, 19, -, 52; 6-SO3H, above 290° (decomposition), 15, -, 67; 7-SO3H, m. above 350° (decomposition), 19, -, 52. Substituents in the 4-position have a great influence, in one sense or another, on the dehydrogenation activity of I and probably on the activity of the 3-CO group. The effect of the 4-CO2H group is not due to its acid character as shown by the relative dehydrogenation activities of the 4-HO and 4-SO3H substituted compounds The effect of double substitution was examined: 4,6-Me2, 241-3°, > 900, -, < 1.1; 4,7-Me2, -, > 900, -, < 1.1; 5,6-Me2, 212-13°, 20, -, 50; 4,7-Me(CO2H), 258-60°, > 900, -, < 1.1; 7,4-Me(CO2H), 295°, -, 1.5, 3300; 4,7-(CO2H)2, 303-5°, -, 3.5, 1430; 4,7-Cl2, 246°, 89, -, 11.2; 5,6-(HO)2, 290° (decomposition), 230, -, 4.3; 5,6-Cl(HO), 284-6°, 236, -, 4.2; 5.6-(MeO)2, 252°, 75, -, 13.3; 5,6-CH2O2, 284°, 60, -, 16.6. The inactivation caused by the 4-Me group persists. The effect of 2 activating groups is not additive but groups with contrary effects may give an intermediate value. Since the inactivation caused by some 4-substituents might be attributable to steric effects, the dehydrogenation activities with H2NCH2CO2H (IV) have been compared with those with III [isatin substituent, times (min.) of decolorization with III and IV, ratios of activity (III/IV) given]: H, 10, 4, 2.5; 4-Me, > 1310, 108, > 13; 5-Me, 11, 4, 2.7; 6-Me, 18, 7, 2.5; 4,6-Me2, > 900, 205, > 4.4; 4,7-Me2, > 900, 131, > 6.9; 4-Cl, 113, 12, 9.4; 4-NO2, > 900, 280, > 3.2; 4-CO2H, 1.5, 0.75, 2. The activity of 4-methylisatin is less than that of the other isomers against IV and no explanation is offered for the activity of 4-carboxyisatin. This study involved multiple reactions and reactants, such as 4,7-Dimethylindoline-2,3-dione (cas: 15540-90-6Name: 4,7-Dimethylindoline-2,3-dione).

4,7-Dimethylindoline-2,3-dione (cas: 15540-90-6) belongs to indole derivatives. Indole produced by Proteus, Pseudomonas, Escherichia and other species was shown to be a growth promoting factor in Arabidopsis thaliana. More than 200 indole derivatives have already been marketed as drugs or are under advanced stages of clinical trials.Name: 4,7-Dimethylindoline-2,3-dione

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Sandmeyer, T. et al. published their research in Helvetica Chimica Acta in 1919 | CAS: 15540-90-6

4,7-Dimethylindoline-2,3-dione (cas: 15540-90-6) belongs to indole derivatives. In addition to tryptophan, indigo, and indoleacetic acid, numerous compounds obtainable from plant or animal sources contain the indole molecular structure. It is used in perfumery and in making tryptophan, an essential amino acid, and indoleacetic acid (heteroauxin), a hormone that promotes the development of roots in plant cuttings.Product Details of 15540-90-6

Isonitrosoacetanilides and their condensation to form isatin derivatives was written by Sandmeyer, T.. And the article was included in Helvetica Chimica Acta in 1919.Product Details of 15540-90-6 The following contents are mentioned in the article:

Hydroxylaminesulfonic acid solution (A) was prepared by adding rapidly with stirring 627 g. NaHSO3 to 84 g. NaNO2 in 500 cc. H2O containing 300 g. ice. After 1.5 hrs. a cold solution of 66 g. concentrated H2SO4 in 66 g. H2O is added during the course of 2 hrs. until the solution is acid to congo paper; after 2 days the reaction is completed. Isonitrosoacetanilide (B) is prepared by boiling 3-4 hrs. under reflux 450 g. of A, adding 10 g. PhNH2, 350 g. H2O, 16.5 g. CCl3CHO.H2O and continuing the boiling for 1 hr. longer. On cooling rapidly the light yellow crystals of B sep., are filtered and washed with H2O; they m. 175° (decomposition), are readily soluble in Et2O or EtOH, slightly in cold H2O or PhH; acids precipitate it unchanged from alk. solutions Isonitrosoacet-p-chloroanilide (C) is prepared by boiling under reflux for several hrs. 450 g. of A, mixing a 100-50 g. portion into a paste with 12.75 g. p-ClC6H4NH2, adding the paste to the remainder of A, diluting with 300 g. H2O and then boiling for 0.75 hr. with 16.5 g. CCl3CHO.H2O. The crystals of C which sep. on cooling are dissolved in dilute NaOH, dilute HCl is added nearly to neutralization and the solution filtered. C is obtained on the addition of acid as a white, crystalline precipitate which is filtered and washed with H2O; it m. 165°, is slightly soluble in H2O, fairly in Et2O and readily in EtOH; yield, 14.3 g. The following derivatives were obtained in the same way from the corresponding aromatic amines and the m. p. refers to the uncrystd. reaction product: o-toluide, 121°; m-toluide, 146°; p-toluide, 162°; m-xylide, 161°; p-xylide, 151°; o-aniside, 140°; p-phenetide, 195°; methylanilide, 145°; ethylanilide, 160°; benzylanilide, 142°; o-chloroanilide, 150°; m-chloroanilide, 154°; 2,5-dichloroanilide, 163°; 3,4-dichloroanilide, 158°; 3,5-dichloroanilide, 185°; 5-chloro-2-toluide (Me = 1), 167°; 4-chloro-2-toluide, 148°; 6-chloro-3-toluide, 187°; 4-chloro-3-toluide, 134°; 2-chloro-4-toluide, 177°; 3-chloro-4-toluide, 188°; 4-chloro-2-aniside (MeO = 1), 182°; p-bromoanilide, 167°; 2,4-dibromoanilide, 215°; anthranilic acid, 208°. Isatin (D) was prepared by adding gradually with stirring 10 g. B to 50 g. of concentrated H2SO4 at 60° and keeping the temperature at all times below 65°; after B has been added and is in solution, the temperature, is raised to 75° for 10-5 min.; the solution is cooled and immediately diluted with 160 g. cold H2O; the yellow-red crystals of D which sep. are filtered and washed with H2O; these crystals show all the characteristic tests for D and m. 197°. In the same way by modifying the temperature the following isonitrosoacetanilides were converted into isatin derivatives; at 55-60° during addition and at 65-70° at completion, methyl and ethylanilides; at 60-5° and subsequently at 70-5°, o- and p- toluides and o- and p-xylides; at 80-5° and subsequently at 95°, o- and m-chloroanilides, 4-chloro-2-toluide, 4-chloro-3-toluide, 2-chloro-4-toluide, 4-chloro-2-aniside; at 90-5° subsequently 105°, 3-chloro-4-toluide, 5-chloro-2-toluide, 6-chloro-3-toluide, p-chloro-anilide, 2,5-and 3,5-dichloroanilides; at 95-100°, subsequently 110°, 3,4-dichloro-anilide, p-bromoanilide, anthranilic acid. The isatin derivatives from o-aniside, p-phenitide and 2,4-dibromoanilide could not be prepared by this reaction; a mixture of two isomers is obtained when both free o-positions are not the same, e. g., m-toluide or 3,4-dichloroanilide. The following were prepared by this reaction and the m. p. refers to the uncrystd. material; mixture of 4- and 6-methylisatins, orange-yellow, 143°; 4,7-dimethylisatin, orange-yellow, 250°; 7-chloroisatin, red-brown, 175°; mixture of 4- and 6-chloroisatins, orange-yellow, 212°; mixture of 4-chloro-7-methylisatin, orange-yellow, 4,5- and. 5,6-dichloroisatins, yellow-red 200°; 4,6-dichloroisatin, citron-yellow, 250°; 273°; 5-chloro-7-methylisatin, yellow-brown, 265°; mixture of 4-chloro-5-methyl- and 5-methyl-6-chloroisatins, red, 205°; 4-methyl-7-chloroisatin, orange-yellow, 252°; 4-chloro-7-methoxyisatin, red, 240°; isatin-7-carboxylic acid, brown-yellow, 235°. Many of the yields were quant. Application for patents has been made. This study involved multiple reactions and reactants, such as 4,7-Dimethylindoline-2,3-dione (cas: 15540-90-6Product Details of 15540-90-6).

4,7-Dimethylindoline-2,3-dione (cas: 15540-90-6) belongs to indole derivatives. In addition to tryptophan, indigo, and indoleacetic acid, numerous compounds obtainable from plant or animal sources contain the indole molecular structure. It is used in perfumery and in making tryptophan, an essential amino acid, and indoleacetic acid (heteroauxin), a hormone that promotes the development of roots in plant cuttings.Product Details of 15540-90-6

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Ablondi, Frank et al. published their research in Journal of Organic Chemistry in 1952 | CAS: 15540-90-6

4,7-Dimethylindoline-2,3-dione (cas: 15540-90-6) belongs to indole derivatives. Indole is an important structural motif of various drugs, therapeutic leads besides its prevalence in numerous natural products, agrochemicals, perfumery, and dyes.Indole was synthesized in moderate yield via an o-naphthoquinone catalyzed tandem cross-coupling of substituted aniline and benzylamine under aerobic oxidation conditions.Application In Synthesis of 4,7-Dimethylindoline-2,3-dione

An Antimalarial alkaloid from hydrangea. XV. Synthesis of 5-, 6-, 7-, and 8-derivatives with no identical substituents was written by Ablondi, Frank;Gordon, Samuel;Morton, John II;Williams, J. H.. And the article was included in Journal of Organic Chemistry in 1952.Application In Synthesis of 4,7-Dimethylindoline-2,3-dione The following contents are mentioned in the article:

To study the effect of substituents in the C6H6 ring on the antimalarial activity and chemotherapeutic index of the DL-form of the hydrangea alkaloid, a series of derivatives with 2 identical substituents in the benzene ring are synthesized by converting, according to Marvel and Hiers (C.A. 20, 193), the appropriate R2C6H3NH2 into the R2C6H3NHCOCH:NOH (I) (Table F) which, on ring closure with 86% H2SO4, give the corresponding isatins (II) (Table G). Oxidation of II with alk. peroxide gives the disubstituted o-H2NC6H4CO2H (III) (Table H) which, on fusion with HCONH2 (see preceding abstract), give the corresponding disubstituted 4(3H)-qainazolones (IV) (Table I). Condensation of 1-carbethoxy-2-(3-bromoacetonyl)-3-methoxypiperidine with the appropriate IV gives the disubstituted 3-[2-oxo-3-(1-carbethoxy-3-methoxy-2-piperidyl)propyl]-4(3H)-quinazolones (V) which, hydrolyzed with 6 N HCl, give the corresponding 3-[2-oxo-3 – (3-methoxy-2-piperidyl)propyl]-4(3H)-quinazolones (VI). Demethylation of VI then gives the corresponding 3-hydroxy-2-piperidyl derivatives (VII) (VIa, R = H). The IV, V, VI, and VII are listed in Table I. Cyclization of 55 g. 3,4-Me.2C6H3NHCOCH:NOH with 292 cc. 96% H2SO4 and 29 cc. H2O, solution of the isatin mixture in 1.2 l. H2O and 310 cc. 10% NaOH, dropwise addition of 12 N HCl to the filtered solution until turbid, and then addition of 4-cc. portions of acid and separation of the precipitate after each addition give 12.6 g. crude 4,5-dimethylisatin. The 4th addition gives no precipitate and strong acidification of the mother liquor gives 23.3 g. 5,6-dimethylisatin. Treating 21.5 g. 4-chloroisatin 4 h. at 50° in 440 cc. AcOH with 20 cc. SO2Cl2 and a crystal of iodine gives 60% 4,5-dichloroisatin. In the same way 6-chloroisatin gives 5,6-dichloroisatin. Adding 16.2 g. NaNO2 in small portions to 25 g. 3,5,2-Me2(H2N)C6H2NO2 in 70 cc. 6 N HCl at 0-5° with stirring and adding the diazonium solution to 35.6 g. NaCN and 34.5 g. NiCl2.H2O in 230 cc. H2O with warming on a steam bath 45 min. give 79% 3,5,2-Me2(NC)C6H2NO2, m. 125-8° which (18.7 g.), heated with 50 cc. 80% H2SO4 5 h. on a steam bath and poured onto ice, gives 52% 4,6,2-Me2(O2N)C6H2CONH2; Table F. Disubstituted α-isonitrosoacetanilides (I); Reaction time, Yield, M.p.,;R2, (min.), %, °C.; 3,4-Di-Me, 2, 84, 179-80a; 2,5-Di-Me, 5, 33, 151-3; 2,4-Di-Me, 8, 55, 158-9; 2,3-Di-Me, 3, 64, 131-2; 2,5-Di-Cl, 15, 22, 166-8; 3,5-Di-Br, 15, 11, 197-200; 3,4-(CH2)4, 120, 87, 147-50; (a) Decomposition Table G., Disubstituted isatins (II); Yield, M.p., R2, Color, %, °C.; 4,5-Di-Me, red, 25, 225-6; 4,7-Di-Me, orange, 75, 260-4; 5,6-Di-Me, red, 46, 214-15; 5,7-Di-Me, orange, 91, 228-31; 6,7-Di-Me, orange, 57, 230-2; 4,5-Di-Cl, red, 60, 243-5; 4,7-Di-Cl, 99, 239-41; 5,6-Di-Cl, orange-red, 68, 264-8a; 4,6-Di-Br, orange, 88, 254-6; 4,5-(CH2)4, orange, 32, 188-90a; 5,6-(CH2)4, orange, 17, 176-85a; (a) Decomposition; Table H. Disubstituted anthranilic acids; Yield, M.p.a,; R2, %, °C.; 5,6-Di-Me, 65, 140-1; 4,6-Di-Me, 91, 160-1; 3,6-Di-Me, 58, 111-13; 4,5-Di-Me, 81, 213-14; 3,5-Di-Me, 65, 188-9; 3,4-Di-Me, 69, 184-6; 5,6-Di-Cl, 59, 165-7; 3,6-Di-Cl, 59, 148-50; 4,5-Di-Cl, 99, 208; 3,5-Di-Cl, 39, 230-1; 4,6-Di-Br, 73, 170-1; 5,6-(CH2)4, 62, 114; 4,5-(CH2)4, 86, 171-3; (a) Decomposition (VIII), m. 169-71°. Reduction of 12.9 g. VIII in 100 cc. Methyl Cellosolve 20 min. with 1 g. Pd-charcoal at 2-3 atm. H gives 91% 4,6,2-Me2(H2N)C6H2CONH2, m. 160-1°. Adding 25 cc. SO2Cl2, over a period of 15 min. to 20 g. o-H2NC6H4CO2H in 500 cc. AcOH at 40°, stirring the mixture 2 h., and extracting the precipitate with 15% HCl on a steam bath give 39% 3,5,2-Cl2(H2N)C6H2CO2H, m.230-1°. This study involved multiple reactions and reactants, such as 4,7-Dimethylindoline-2,3-dione (cas: 15540-90-6Application In Synthesis of 4,7-Dimethylindoline-2,3-dione).

4,7-Dimethylindoline-2,3-dione (cas: 15540-90-6) belongs to indole derivatives. Indole is an important structural motif of various drugs, therapeutic leads besides its prevalence in numerous natural products, agrochemicals, perfumery, and dyes.Indole was synthesized in moderate yield via an o-naphthoquinone catalyzed tandem cross-coupling of substituted aniline and benzylamine under aerobic oxidation conditions.Application In Synthesis of 4,7-Dimethylindoline-2,3-dione

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Lo, Wei Fun’s team published research in Tetrahedron Letters in 48 | CAS: 919119-59-8

Tetrahedron Letters published new progress about 919119-59-8. 919119-59-8 belongs to indole-building-block, auxiliary class Indole,Boronic acid and ester,Boronate Esters,Boronic Acids,Boronic acid and ester, name is 2-Methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole, and the molecular formula is C15H20BNO2, Name: 2-Methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole.

Lo, Wei Fun published the artcileA highly selective Ir-catalyzed borylation of 2-substituted indoles: a new access to 2,7- and 2,4,7-substituted indoles, Name: 2-Methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole, the publication is Tetrahedron Letters (2007), 48(3), 371-375, database is CAplus.

The selective CH-functionalization of 2-substituted indoles was presented. Using bis(pinacolato)diboron in the presence of iridium complexes, a novel catalytic mono-borylation was observed preferentially at the 7-position of the indole. This allowed for an efficient synthesis of various 2,7-di- and 2,4,7-trisubstituted indoles, e.g., I (R = Me, Ph or CO2Et), which are otherwise difficult to access. The scope and limitation of the method was demonstrated.

Tetrahedron Letters published new progress about 919119-59-8. 919119-59-8 belongs to indole-building-block, auxiliary class Indole,Boronic acid and ester,Boronate Esters,Boronic Acids,Boronic acid and ester, name is 2-Methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole, and the molecular formula is C15H20BNO2, Name: 2-Methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole.

Referemce:
https://www.nature.com/articles/s41429-020-0333-2,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Arang, Nadia’s team published research in Nature Communications in 8 | CAS: 330161-87-0

Nature Communications published new progress about 330161-87-0. 330161-87-0 belongs to indole-building-block, auxiliary class Protein Tyrosine Kinase/RTK,Src, name is SU6656, and the molecular formula is C19H21N3O3S, Recommanded Product: SU6656.

Arang, Nadia published the artcileIdentifying host regulators and inhibitors of liver stage malaria infection using kinase activity profiles, Recommanded Product: SU6656, the publication is Nature Communications (2017), 8(1), 1-9, database is CAplus and MEDLINE.

Plasmodium parasites have extensive needs from their host hepatocytes during the obligate liver stage of infection, yet there remains sparse knowledge of specific host regulators. Here we assess 34 host-targeted kinase inhibitors for their capacity to eliminate Plasmodium yoelii-infected hepatocytes. Using pre-existing activity profiles of each inhibitor, we generate a predictive computational model that identifies host kinases, which facilitate Plasmodium yoelii liver stage infection. We predict 47 kinases, including novel and previously described kinases that impact infection. The impact of a subset of kinases is exptl. validated, including Receptor Tyrosine Kinases, members of the MAP Kinase cascade, and WEE1. Our approach also predicts host-targeted kinase inhibitors of infection, including compounds already used in humans. Three of these compounds, VX-680, Roscovitine and Sunitinib, each eliminate >85% of infection. Our approach is well-suited to uncover key host determinants of infection in difficult model systems, including field-isolated parasites and/or emerging pathogens.

Nature Communications published new progress about 330161-87-0. 330161-87-0 belongs to indole-building-block, auxiliary class Protein Tyrosine Kinase/RTK,Src, name is SU6656, and the molecular formula is C19H21N3O3S, Recommanded Product: SU6656.

Referemce:
https://www.nature.com/articles/s41429-020-0333-2,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Neel, David A.’s team published research in Bioorganic & Medicinal Chemistry Letters in 8 | CAS: 149108-61-2

Bioorganic & Medicinal Chemistry Letters published new progress about 149108-61-2. 149108-61-2 belongs to indole-building-block, auxiliary class Indole,Boronic acid and ester,Sulfamide,Benzene,Boronic Acids,Boronic Acids,Boronic acid and ester,, name is (1-tosyl-1H-Indol-3-yl)boronic acid, and the molecular formula is C15H14BNO4S, Synthetic Route of 149108-61-2.

Neel, David A. published the artcileSynthesis of bisindolylmaleimides using a palladium catalyzed cross-coupling reaction, Synthetic Route of 149108-61-2, the publication is Bioorganic & Medicinal Chemistry Letters (1998), 8(1), 47-50, database is CAplus and MEDLINE.

Bis(indolyl)maleimides are known to be potent and selective PKC inhibitors. A new synthesis of this class of compound is reported. One of the target compounds was 3-(1H-indol-3-yl)-1-methyl-4-(1-methyl-1H-indol-3-yl)-1H-Pyrrole-2,5-dione. The key step is a Suzuki cross-coupling reaction using a readily available indolylmaleimide triflate intermediate.

Bioorganic & Medicinal Chemistry Letters published new progress about 149108-61-2. 149108-61-2 belongs to indole-building-block, auxiliary class Indole,Boronic acid and ester,Sulfamide,Benzene,Boronic Acids,Boronic Acids,Boronic acid and ester,, name is (1-tosyl-1H-Indol-3-yl)boronic acid, and the molecular formula is C15H14BNO4S, Synthetic Route of 149108-61-2.

Referemce:
https://www.nature.com/articles/s41429-020-0333-2,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Qiu, Di’s team published research in Journal of Organic Chemistry in 78 | CAS: 642494-36-8

Journal of Organic Chemistry published new progress about 642494-36-8. 642494-36-8 belongs to indole-building-block, auxiliary class Indole,Boronic acid and ester,Indole,Boronate Esters,Boronic acid and ester, name is 6-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole, and the molecular formula is C14H18BNO2, Safety of 6-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole.

Qiu, Di published the artcileSynthesis of Pinacol Arylboronates from Aromatic Amines: A Metal-Free Transformation, Safety of 6-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole, the publication is Journal of Organic Chemistry (2013), 78(5), 1923-1933, database is CAplus and MEDLINE.

A metal-free borylation process based on Sandmeyer-type transformation using arylamines derivatives as the substrates was developed. Through optimization of the reaction conditions, this novel conversion can be successfully applied to a wide range of aromatic amines, affording borylation products in moderate to good yields. Various functionalized arylboronates, which are difficult to access by other methods, can be easily obtained with this metal-free transformation. Also, this transformation can be followed by Suzuki-Miyaura cross-coupling without purification of the borylation products, which enhances the practical usefulness of this method. A possible reaction mechanism involving radical species is proposed.

Journal of Organic Chemistry published new progress about 642494-36-8. 642494-36-8 belongs to indole-building-block, auxiliary class Indole,Boronic acid and ester,Indole,Boronate Esters,Boronic acid and ester, name is 6-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole, and the molecular formula is C14H18BNO2, Safety of 6-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole.

Referemce:
https://www.nature.com/articles/s41429-020-0333-2,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles