Synthetic Route of 16096-33-6, The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.16096-33-6, Name is 1-Phenyl-1H-indole, molecular formula is C14H11N. In a Article,once mentioned of 16096-33-6
Ruthenium porphyrins (particularly [Ru(2,6-Cl2tpp)CO]; tpp = tetraphenylporphinato) and RuCl3 can act as oxidation and/or Lewis acid catalysts for direct C-3 alkylation of indoles, giving the desired products in high yields (up to 82% based on 60-95% substrate conversions). These ruthenium compounds catalyze oxidative coupling reactions of a wide variety of anilines and indoles bearing electron-withdrawing or electron-donating substituents with high regioselectivity when using tBuOOH as an oxidant, resulting in the alkylation of N-arylindoles to 3{[(N-aryl-N-alkyl)amino]methyl} indoles (yield: up to 82%, conversion: up to 95%) and the alkylation of N-alkyl or N-H indoles to 3-[p-(dialkylamino)benzyl]indoles (yield: up to 73%, conversion: up to 92%). A tentative reaction mechanism involving two pathways is proposed: an iminium ion intermediate may be generated by oxidation of an sp3 C-H bond of the alkylated aniline by an oxoruthenium species; this iminium ion could then either be trapped by an N-arylindole (pathway A) or converted to formaldehyde, allowing a subsequent three-component coupling reaction of the in situ generated formaldehyde with an N-alkylindole and an aniline in the presence of a Lewis acid catalyst (pathway B). The results of deuterium-labeling experiments are consistent with the alkylation of N-alkylindoles via pathway B. The relative reaction rates of [Ru(2,6-Cl 2tpp)CO] catalyzed oxidative coupling reactions of 4-X-substituted N,N-dimethylanilines with N-phenylindole (using tBuOOH as oxidant), determined through competition experiments, correlate linearly with the substituent constants o (R2=0.989), giving a rho value of -1.09. This rho value and the magnitudes of the intra- and intermolecular deuterium isotope effects (kH/kD) suggest that electron transfer most likely occurs during the initial stage of the oxidation of 4-X-substituted N,N-dimethylanilines. Ruthenium-catalyzed three-component reaction of N-alkyl N-H indoles, paraformaldehyde, and anilines gave 3-[p-(dialkylamino)benzyl] indoles in up to 82% yield (conversion: up to 95%).
The reactant in an enzyme-catalyzed reaction is called a substrate. Enzyme inhibitors cause a decrease in the reaction rate of an enzyme-catalyzed reaction.I hope my blog about 16096-33-6 is helpful to your research. Synthetic Route of 16096-33-6
Reference:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles