B(C6F5)3-Catalyzed Direct C3 Alkylation of Indoles and Oxindoles was written by Basak, Shyam;Alvarez-Montoya, Ana;Winfrey, Laura;Melen, Rebecca L.;Morrill, Louis C.;Pulis, Alexander P.. And the article was included in ACS Catalysis in 2020.HPLC of Formula: 150560-58-0 This article mentions the following:
A new approach to the direct C3-alkylation of indoles and oxindoles using a B(C6F5)3 catalyst and amine-derived alkylating agents to give arylated indole derivatives I [R = H, Me, n-hexyl, Bn; R1 = H, Me, Ph; R2 = H, 4-Me, 5-Cl, etc.; R3 = Me, Et, Bn, etc.] and oxindole derivatives II [R4 = H, 5-F, 6-Me, etc.; R5 = CO2Et, Ph, 4-MeC6H4, etc.] were reported. Also this borane-catalyzed strategy in alkylation-ring opening cascade process to afford functionalized indoles III [R6 = H, Me; R7 = H, Me; R8 = H, 5-OMe; R9 = 2,4,6-(Me)3C6H2, 2-MeOC6H4, 2-Me-4-MeOC6H3, 2,6-(Me)2-4-MeOC6H2] was reported. In the experiment, the researchers used many compounds, for example, 5-Isopropylindoline-2,3-dione (cas: 150560-58-0HPLC of Formula: 150560-58-0).
5-Isopropylindoline-2,3-dione (cas: 150560-58-0) belongs to indole derivatives. Indole is an important structural motif of various drugs, therapeutic leads besides its prevalence in numerous natural products, agrochemicals, perfumery, and dyes. More than 200 indole derivatives have already been marketed as drugs or are under advanced stages of clinical trials.HPLC of Formula: 150560-58-0
Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles