Previous studies have identified that indole-oxidases are present in P. putida, whose major ligands are heterocyclic substrates and have an interesting affinity when the substrate is indole. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. These enzymes oxidize the ring so the substrate turns into Indigo. Related Products of 771-51-7.
Liu, Bowen;Ju, Yawen;Xia, Chao;Zhong, Rui;Christensen, Michael J.;Zhang, Xingxu;Nan, Zhibiao research published 《 The effect of Epichloe endophyte on phyllosphere microbes and leaf metabolites in Achnatherum inebrians》, the research content is summarized as follows. Upon exposure to the prevailing environment, leaves become increasingly colonized by fungi and bacteria located on the surface (epiphytic) or within (endophytic) the leaves. Many cool season grasses, including Achnatherum inebrians, host a seed-borne, intercellular, mutualistic Epichloe fungal endophyte, the growth of which is synchronized with the host grass. A study utilizing illumina sequencing was used to examine the epiphytic and endophytic microbial communities in Epichloe endophyte-infected and endophyte-free A. inebrians plants growing under hot dry field conditions. The presence of Epichloe endophyte increased the Shannon and decreased Simpson diversity of bacterial and fungal communities. Sphingomonas and Hymenobacter bacteria and Filobasidium and Mycosphaerella fungi were growing largely epiphytically, whereas Methylobacterium, Escherichia-Shigella, and the fungus Blumeria were mostly found within leaves with the location of colonization influenced by the Epichloe endophyte. In addition, leaf metabolites in Epichloe-infected and Epichloe-free leaves were examined using LC/MS. Epichloe was significantly correlated with 132 metabolites.
771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., Related Products of 771-51-7
Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles