Yilmaz, Ozgur team published research on Journal of Organic Chemistry in 2021 | 771-51-7

Product Details of C10H8N2, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Indole, first isolated in 1866, has the molecular formula C8H7N, and it is commonly synthesized from phenylhydrazine and pyruvic acid, 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. although several other procedures have been discovered.Indole is a colourless solid having a pleasant fragrance in highly dilute solutions. It melts at 52.5° C (126.5° F). Product Details of C10H8N2.

Yilmaz, Ozgur;Dengiz, Cagatay;Emmert, Marion H. research published 《 Iron-Catalyzed α-C-H Cyanation of Simple and Complex Tertiary Amines》, the research content is summarized as follows. This manuscript details the development of a general and mild protocol for the α-C-H cyanation of tertiary amines e.g., tributylamine and its application in late-stage functionalization. Suitable substrates include tertiary aliphatic, benzylic, and aniline-type substrates and complex substrates e.g., tributylamine. Functional groups tolerated under the reaction conditions include various heterocycles and ketones, amides, olefins, and alkynes e.g., 2-(dibutylamino)pentanenitrile. This broad substrate scope is remarkable, as comparable reaction protocols for α-C-H cyanation frequently occur via free radical mechanisms and are thus fundamentally limited in their functional group tolerance. In contrast, the presented catalyst system tolerates functional groups that typically react with free radicals, suggesting an alternative reaction pathway. All components of the described catalyst system are readily available, allowing implementation of the presented methodol. without the need for lengthy catalyst synthesis.

Product Details of C10H8N2, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Yao, Guiyang team published research on Journal of the American Chemical Society in 2021 | 35737-15-6

35737-15-6, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., Computed Properties of 35737-15-6

In addition to indoleacetic acid, indigo, and tryptophan, numerous compounds obtainable from plant or animal sources contain the indole molecular structure. 35737-15-6, formula is C26H22N2O4, Name is Fmoc-Trp-OH. The best-known group of these compounds is the indole alkaloids, members of which have been isolated from plants representing more than 30 families. Computed Properties of 35737-15-6.

Yao, Guiyang;Knittel, Caroline H.;Kosol, Simone;Wenz, Marius T.;Keller, Bettina G.;Gruss, Hendrik;Braun, Alexandra C.;Lutz, Christian;Hechler, Torsten;Pahl, Andreas;Suessmuth, Roderich D. research published 《 Iodine-mediated tryptathionine formation facilitates the synthesis of amanitins》, the research content is summarized as follows. Synthetic methods on the macrocyclization of peptides are of high interest since they facilitate the synthesis of various types of potentially bioactive compounds, e.g. addressing targets like protein-protein-interactions. Herein, we report on an efficient method to construct tryptathionine-cross-links in peptides between the amino acids Trp and Cys. This reaction not only is the basis for the total synthesis of the death cap toxin α-amanitin but also provides rapid access to various new amanitin analogs. This study for the first time presents a systematic compilation of structure-activity relations (SAR) of amatoxins with regard to RNA polymerase II inhibition and cytotoxicity with one amanitin derivative of superior RNAP II inhibition. The present approach paves the way for the synthesis of structurally diverse amatoxins as future payloads for antibody-toxin conjugates in cancer therapy.

35737-15-6, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., Computed Properties of 35737-15-6

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Yang, Yi team published research on Organic Process Research & Development in 2021 | 35737-15-6

Safety of Fmoc-Trp-OH, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., 35737-15-6.

In addition to indoleacetic acid, indigo, and tryptophan, numerous compounds obtainable from plant or animal sources contain the indole molecular structure. 35737-15-6, formula is C26H22N2O4, Name is Fmoc-Trp-OH. The best-known group of these compounds is the indole alkaloids, members of which have been isolated from plants representing more than 30 families. Safety of Fmoc-Trp-OH.

Yang, Yi;Hansen, Lena;Fraczek, Aleksandra;Badalassi, Fabrizio;Kjellstrom, Johan research published 《 DMF-assisted iodination side reaction during the preparation of disulfide peptides, its substrate/solvent/Ph dependence, and implications on disulfide-peptide production》, the research content is summarized as follows. Severe iodination of a disulfide peptide mol. (peptide D) was detected from the on-resin disulfide cyclization process. LC/MS/MS results indicated that iodination occurred on the Thi (thienylalanine) residue. Systematic investigation revealed that the iodination reaction occurred predominantly in the I2/DMF-mediated on-resin disulfide formation reaction. The iodination side reaction was strongly solvent-dependent and favored in DMF and NMP. A tentative mechanism similar to that of the Vilsmeier-Haack reaction was proposed. A variety of amino acid/peptide substrates were tested as iodination substrates. The results indicated the susceptibility of amino acids with electron-rich aromatic groups to iodination. Addnl., various solutions were proposed for preventing peptide iodination based on the findings in this study. This study demonstrates the applicability of the on-resin disulfide production of peptides bearing electron-rich aromatic residues.

Safety of Fmoc-Trp-OH, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., 35737-15-6.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Yang, Wuqi team published research on Journal of Agricultural and Food Chemistry in 2021 | 771-51-7

Recommanded Product: 2-(1H-Indol-3-yl)acetonitrile, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Indole, first isolated in 1866, has the molecular formula C8H7N, and it is commonly synthesized from phenylhydrazine and pyruvic acid, 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. although several other procedures have been discovered.Indole is a colourless solid having a pleasant fragrance in highly dilute solutions. It melts at 52.5° C (126.5° F). Recommanded Product: 2-(1H-Indol-3-yl)acetonitrile.

Yang, Wuqi;Ren, Daoyuan;Zhao, Yan;Liu, Lei;Yang, Xingbin research published 《 Fuzhuan brick tea polysaccharide improved ulcerative colitis in association with gut microbiota-derived tryptophan metabolism》, the research content is summarized as follows. Fuzhuan brick tea (FBT) has attracted wide attention because of its substantial nutritional value. This article first studied the protective mechanism of FBT polysaccharide (FBTP) on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) by 16S rDNA amplicon sequencing technol. and metabolomics. It was demonstrated that the administration of FBTP by oral gavage (100, 200, and 400 mg/kg·bw) could decrease the disease activity index (DAI), prevent colon shortening, and alleviate colon tissue damage and inflammation in mice with UC. Interestingly, FBTP relieved the intestinal microbiota disorder caused by UC and contributed to the proliferation of beneficial microbiota, such as Lactobacillus and Akkermansia, followed by a significant increase in the levels of short-chain fatty acids (SCFAs). Furthermore, FBTP dramatically altered tryptophan metabolism and elevated the fecal contents of indole-3-acetaldehyde (IAld) and indole-3-acetic acid (IAA). It was also found that FBTP significantly increased the colonic expressions of aromatic hydrocarbon receptors (AhR) and interleukin-22 (IL-22) and further promoted the expressions of intestinal tight junction (TJ) proteins ZO-1 and occludin in the colitis mice. Cumulatively, these findings suggest that FBTP can relieve UC by regulating intestinal flora disorders, promoting microbial metabolism, and repairing the intestinal barrier.

Recommanded Product: 2-(1H-Indol-3-yl)acetonitrile, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Yang, Wen-Long team published research on Journal of Agricultural and Food Chemistry in 2020 | 771-51-7

771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., SDS of cas: 771-51-7

In addition to indoleacetic acid, indigo, and tryptophan, numerous compounds obtainable from plant or animal sources contain the indole molecular structure. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. The best-known group of these compounds is the indole alkaloids, members of which have been isolated from plants representing more than 30 families. SDS of cas: 771-51-7.

Yang, Wen-Long;Dai, Zhi-Ling;Cheng, Xi;Guo, Ling;Fan, Zhi-Xia;Ge, Feng;Dai, Yi-Jun research published 《 Sulfoxaflor degraded by Aminobacter sp. CGMCC 1.17253 through hydration pathway mediated by nitrile hydratase》, the research content is summarized as follows. Sulfoxaflor, a sulfoximine insecticide, could efficiently control many insect pests of sap-feeding. Microbial degradation of sulfoxaflor and the enzymic mechanism involved have not been studied to date. A bacterial isolate JW2 that transforms sulfoxaflor to X11719474 was isolated and identified as Aminobacter sp. CGMCC 1.17253. Both the recombinant Escherichia coli strain harboring the Aminobacter sp. CGMCC 1.17253 nitrile hydratase (NHase) gene and the pure NHase acquired sulfoxaflor-degrading ability. Aminobacter sp. CGMCC 1.17253 NHase is a typical cobalt-containing NHase content of subunit α, subunit β, and an accessory protein, and the three-dimensional homol. model of NHase was built. Substrate specificity tests showed that NHase catalyzed the conversion of acetamiprid, thiacloprid, indolyl-3-acetonitrile, 3-cyanopyridine, and benzonitrile into their corresponding amides, indicating its broad substrate specificity. This is the first report of the pure bacteria degradation of the sulfoxaflor residual in the environment and reveals the enzymic mechanism mediated by Aminobacter sp. CGMCC 1.17253.

771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., SDS of cas: 771-51-7

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Yang, Su team published research on ChemBioChem in 2021 | 35737-15-6

Related Products of 35737-15-6, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., 35737-15-6.

Indole, first isolated in 1866, has the molecular formula C8H7N, and it is commonly synthesized from phenylhydrazine and pyruvic acid, 35737-15-6, formula is C26H22N2O4, Name is Fmoc-Trp-OH. although several other procedures have been discovered.Indole is a colourless solid having a pleasant fragrance in highly dilute solutions. It melts at 52.5° C (126.5° F). Related Products of 35737-15-6.

Yang, Su;Chang, Yan;Hazoor, Shan;Brautigam, Chad;Foss, Frank W. Jr.;Pan, Zui;Dong, He research published 《 Modular Design of Supramolecular Ionic Peptides with Cell-Selective Membrane Activity》, the research content is summarized as follows. The rational design of materials with cell-selective membrane activity is an effective strategy for the development of targeted mol. imaging and therapy. Here we report a new class of cationic multidomain peptides (MDPs) that can undergo enzyme-mediated mol. transformation followed by supramol. assembly to form nanofibers in which cationic clusters are presented on a rigid β-sheet backbone. This structural transformation, which is induced by cells overexpressing the specific enzymes, led to a shift in the membrane perturbation potential of the MDPs, and consequently enhanced cell uptake and drug delivery efficacy. We envision the directed self-assembly based on modularly designed MDPs as a highly promising approach to generate dynamic supramol. nanomaterials with emerging membrane activity for a range of disease targeted mol. imaging and therapy applications.

Related Products of 35737-15-6, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., 35737-15-6.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Yang, Lei team published research on Tetrahedron Letters in 2020 | 19005-93-7

Recommanded Product: 1H-Indole-2-carbaldehyde, 1H-Indole-2-carbaldehyde is a useful research compound. Its molecular formula is C9H7NO and its molecular weight is 145.16 g/mol. The purity is usually 95%.
1H-Indole-2-carbaldehyde is a useful research chemical used as a reactant in the synthesis of substituted 2-amino-4H-chromenes and benzochromenes using K2CO3 as catalyst.
1H-Indole-2-carbaldehyde is a solvent that has been used in the protein data and molecular modeling study. The 1H NMR spectrum of this compound showed an intense signal at δ 4.8 ppm, corresponding to the hydroxyl proton. This solvent also has fluorescence properties, as shown by its photophysical and structural analysis. The 1H-indole-2-carbaldehyde molecule has an active methylene group and an oxindole ring with amine substituents., 19005-93-7.

Indole, first isolated in 1866, has the molecular formula C8H7N, and it is commonly synthesized from phenylhydrazine and pyruvic acid, 19005-93-7, formula is C9H7NO, Name is 1H-Indole-2-carbaldehyde. although several other procedures have been discovered.Indole is a colourless solid having a pleasant fragrance in highly dilute solutions. It melts at 52.5° C (126.5° F). Recommanded Product: 1H-Indole-2-carbaldehyde.

Yang, Lei;Chen, Xuan;Ni, Kaidong;Li, Yuansheng;Wu, Jianhong;Chen, Weilin;Ji, Yin;Feng, Lili;Li, Fei;Chen, Dongyin research published 《 Proton-exchanged montmorillonite-mediated reactions of hetero-benzyl acetates: Application to the synthesis of Zafirlukast》, the research content is summarized as follows. Proton-exchanged montmorillonite (H-mont) with outstanding surface characteristics can provide abundant acidic sites in the mesoporous, and serve as an efficient heterogeneous catalyst for the synthesis of heterocycle-containing diarylmethanes via Friedel-Crafts-like alkylation of (hetero)arenes by heterobenzyl acetates under mild reaction conditions without requiring any additives or an inert atm. Using this strategy, the gram-scale synthesis of indole-containing diarylmethane I has been accomplished in good yield for the preparation of Zafirlukast. In addition, H-mont can be applied to the nucleophilic substitution reactions of heterobenzyl acetate II with a variety of alcs. and 1,3-dicarbonyl compounds

Recommanded Product: 1H-Indole-2-carbaldehyde, 1H-Indole-2-carbaldehyde is a useful research compound. Its molecular formula is C9H7NO and its molecular weight is 145.16 g/mol. The purity is usually 95%.
1H-Indole-2-carbaldehyde is a useful research chemical used as a reactant in the synthesis of substituted 2-amino-4H-chromenes and benzochromenes using K2CO3 as catalyst.
1H-Indole-2-carbaldehyde is a solvent that has been used in the protein data and molecular modeling study. The 1H NMR spectrum of this compound showed an intense signal at δ 4.8 ppm, corresponding to the hydroxyl proton. This solvent also has fluorescence properties, as shown by its photophysical and structural analysis. The 1H-indole-2-carbaldehyde molecule has an active methylene group and an oxindole ring with amine substituents., 19005-93-7.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Yang, Han team published research on ACS Omega in 2021 | 19005-93-7

Recommanded Product: 1H-Indole-2-carbaldehyde, 1H-Indole-2-carbaldehyde is a useful research compound. Its molecular formula is C9H7NO and its molecular weight is 145.16 g/mol. The purity is usually 95%.
1H-Indole-2-carbaldehyde is a useful research chemical used as a reactant in the synthesis of substituted 2-amino-4H-chromenes and benzochromenes using K2CO3 as catalyst.
1H-Indole-2-carbaldehyde is a solvent that has been used in the protein data and molecular modeling study. The 1H NMR spectrum of this compound showed an intense signal at δ 4.8 ppm, corresponding to the hydroxyl proton. This solvent also has fluorescence properties, as shown by its photophysical and structural analysis. The 1H-indole-2-carbaldehyde molecule has an active methylene group and an oxindole ring with amine substituents., 19005-93-7.

Indole, first isolated in 1866, has the molecular formula C8H7N, and it is commonly synthesized from phenylhydrazine and pyruvic acid, 19005-93-7, formula is C9H7NO, Name is 1H-Indole-2-carbaldehyde. although several other procedures have been discovered.Indole is a colourless solid having a pleasant fragrance in highly dilute solutions. It melts at 52.5° C (126.5° F). Recommanded Product: 1H-Indole-2-carbaldehyde.

Yang, Han;Poznik, Michal;Tang, Shaojian;Xue, Peng;Du, Lidong;Liu, Chenlu;Chen, Xiaochuan;Chruma, Jason J. research published 《 Synthesis of Conformationally Liberated Yohimbine Analogues and Evaluation of Cytotoxic Activity》, the research content is summarized as follows. A modular synthetic approach to strategically unique structural analogs of the alkaloid yohimbine is reported. The overall synthetic strategy couples the transition-metal-catalyzed decarboxylative allylation of 2,2-diphenylglycinate imino esters with a scandium triflate-mediated highly endo-selective intramol. Diels-Alder (IMDA) cycloaddition to generate a small collection of de-rigidified yohimbine analogs lacking the ethylene linkage between the indole and decahydroisoquinoline units. One compound generated in this study contains an unprecedented pentacyclic urea core and appears to demonstrate increased cytotoxicity against the gastric cancer cell line SGC-7901 in comparison to a pancreatic cancer cell line (PATU-8988) and a normal human gastric mucosal cell line (GES-1).

Recommanded Product: 1H-Indole-2-carbaldehyde, 1H-Indole-2-carbaldehyde is a useful research compound. Its molecular formula is C9H7NO and its molecular weight is 145.16 g/mol. The purity is usually 95%.
1H-Indole-2-carbaldehyde is a useful research chemical used as a reactant in the synthesis of substituted 2-amino-4H-chromenes and benzochromenes using K2CO3 as catalyst.
1H-Indole-2-carbaldehyde is a solvent that has been used in the protein data and molecular modeling study. The 1H NMR spectrum of this compound showed an intense signal at δ 4.8 ppm, corresponding to the hydroxyl proton. This solvent also has fluorescence properties, as shown by its photophysical and structural analysis. The 1H-indole-2-carbaldehyde molecule has an active methylene group and an oxindole ring with amine substituents., 19005-93-7.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Yang, Cheng team published research on Chemistry of Natural Compounds in 2021 | 771-51-7

Recommanded Product: 2-(1H-Indol-3-yl)acetonitrile, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Indole, also called Benzopyrrole, a heterocyclic organic compound occurring in some flower oils, such as jasmine and orange blossom, in coal tar, and in fecal matter. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. It is used in perfumery and in making tryptophan, an essential amino acid, and indoleacetic acid (heteroauxin), a hormone that promotes the development of roots in plant cuttings. Recommanded Product: 2-(1H-Indol-3-yl)acetonitrile.

Yang, Cheng;Zheng, Shaojun;Tan, Yi;Chen, Xiaoyun;Bai, Hongjin;Zhu, Rui;Gao, Yuhua research published 《 Synthesis and Antimicrobial Evaluation of Calycanthaceous Alkaloid Derivatives》, the research content is summarized as follows. To find pesticidal lead compounds with high activity, a series of new chimonanthine derivatives was synthesized via the introduction of the functional group at the N-position to compound I. A preliminary bioassay showed that most of them displayed potent bioactivities. In particular, compound II displayed significant activity and might be a potential novel lead compound for further development of antifungal agent.

Recommanded Product: 2-(1H-Indol-3-yl)acetonitrile, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Yan, Jun team published research on Science of the Total Environment in 2022 | 771-51-7

771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., Reference of 771-51-7

Indole, also called Benzopyrrole, a heterocyclic organic compound occurring in some flower oils, such as jasmine and orange blossom, in coal tar, and in fecal matter. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. It is used in perfumery and in making tryptophan, an essential amino acid, and indoleacetic acid (heteroauxin), a hormone that promotes the development of roots in plant cuttings. Reference of 771-51-7.

Yan, Jun;Chen, Qi;Tian, Lei;Li, Kang;Lai, Wenqing;Bian, Liping;Han, Jie;Jia, Rui;Liu, Xiaohua;Xi, Zhuge research published 《 Intestinal toxicity of micro- and nano-particles of foodborne titanium dioxide in juvenile mice: Disorders of gut microbiota-host co-metabolites and intestinal barrier damage》, the research content is summarized as follows. The wide use of TiO2 particles in food and the high exposure risk to children have prompted research into the health risks of TiO2. We used the microbiome and targeted metabolomics to explore the potential mechanism of intestinal toxicity of foodborne TiO2 micro-/nanoparticles after oral exposure for 28 days in juvenile mice. Results showed that the gut microbiota-including the abundance of Bacteroides, Bifidobacterium, Lactobacillus, and Prevotella-changed dynamically during exposure. The organic inflammatory response was activated, and lipopolysaccharide levels increased. Intestinal toxicity manifested as increased mucosal permeability, impaired intestinal barrier, immune damage, and pathol. changes. The expression of antimicrobial peptides, occludin, and ZO-1 significantly reduced, while that of JNK2 and Src/pSrc increased. Compared with micro-TiO2 particles, the nano-TiO2 particles had strong toxicity. Fecal microbiota transplant confirmed the key role of gut microbiota in intestinal toxicity. The levels of gut microbiota-host co-metabolites, including pyroglutamic acid, L-glutamic acid, phenylacetic acid, and 3-hydroxyphenylacetic acid, changed significantly. Significant changes were observed in the glutathione and propanoate metabolic pathways. There was a significant correlation between the changes in gut microbiota, metabolites, and intestinal cytokine levels. These, together with the intestinal barrier damage signaling pathway, constitute the network mechanism of the intestinal toxicity of TiO2 particles.

771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., Reference of 771-51-7

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles