Indole, first isolated in 1866, has the molecular formula C8H7N, and it is commonly synthesized from phenylhydrazine and pyruvic acid, 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. although several other procedures have been discovered.Indole is a colourless solid having a pleasant fragrance in highly dilute solutions. It melts at 52.5° C (126.5° F). Recommanded Product: 2-(1H-Indol-3-yl)acetonitrile.
Yang, Wuqi;Ren, Daoyuan;Zhao, Yan;Liu, Lei;Yang, Xingbin research published 《 Fuzhuan brick tea polysaccharide improved ulcerative colitis in association with gut microbiota-derived tryptophan metabolism》, the research content is summarized as follows. Fuzhuan brick tea (FBT) has attracted wide attention because of its substantial nutritional value. This article first studied the protective mechanism of FBT polysaccharide (FBTP) on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) by 16S rDNA amplicon sequencing technol. and metabolomics. It was demonstrated that the administration of FBTP by oral gavage (100, 200, and 400 mg/kg·bw) could decrease the disease activity index (DAI), prevent colon shortening, and alleviate colon tissue damage and inflammation in mice with UC. Interestingly, FBTP relieved the intestinal microbiota disorder caused by UC and contributed to the proliferation of beneficial microbiota, such as Lactobacillus and Akkermansia, followed by a significant increase in the levels of short-chain fatty acids (SCFAs). Furthermore, FBTP dramatically altered tryptophan metabolism and elevated the fecal contents of indole-3-acetaldehyde (IAld) and indole-3-acetic acid (IAA). It was also found that FBTP significantly increased the colonic expressions of aromatic hydrocarbon receptors (AhR) and interleukin-22 (IL-22) and further promoted the expressions of intestinal tight junction (TJ) proteins ZO-1 and occludin in the colitis mice. Cumulatively, these findings suggest that FBTP can relieve UC by regulating intestinal flora disorders, promoting microbial metabolism, and repairing the intestinal barrier.
Recommanded Product: 2-(1H-Indol-3-yl)acetonitrile, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.
Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles